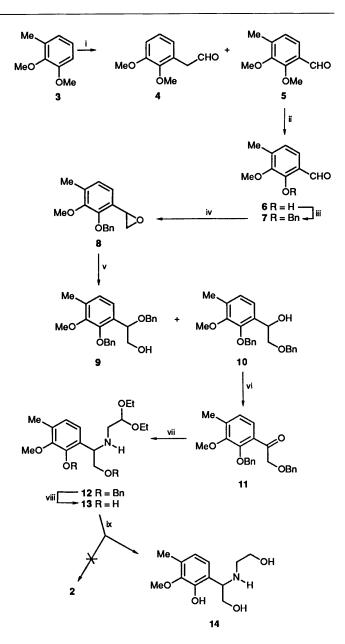

Studies on the Natural β-Adrenergic Receptor Antagonist MY336-a: Synthesis of a 3-Dehydroxymethyl Analogue

Teodoro S. Kaufman

Instituto de Química Orgánica de Síntesis, (CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, (2000) Rosario, Argentina

The preparation of a polysubstituted tetrahydroisoquinoline, which lacks only the 3-CH₂OH group of MY336-a, is described.

MY336-a 1, a polysubstituted simple tetrahydroisoquinoline recently isolated from *Streptomyces gabonae* (KY 2234, ATCC

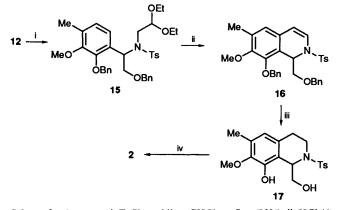

15282),¹ is the first microbial metabolite known to display βadrenergic receptor antagonism. This communication reports the elaboration of model compound 2, an analogue of the natural product lacking its 3-CH₂OH group, by acid catalysed cyclisation of a conveniently substituted N-benzyl amino acetal derivative obtained from 2,3-dimethoxytoluene 3.

As outlined in Scheme 1, the synthetic route to 2 started by submission of 3 to a heteroatom-facilitated lithiation with the butyllithium-tetramethylethylenediamine (TMEDA) complex in hexane; dimethylformamide (DMF) quench of the resulting organolithium species and acidic work-up² afforded a separable 1:2 mixture of aldehydes 4 and 5* in 77% combined yield.³ Anchimerically assisted deprotection of 5 with sodium propyl sulfide in DMF⁴ gave phenol 6 which, after benzylation, provided the appropriate substituted intermediate 7 (m.p. 35– 36 °C, 72% overall yield).

Incorporation of the C-1 substituent of 2 and synthesis of the key N-benzyl amino acetal were carried out in four steps. First, exposure of the aldehyde 7 to dimethylsulfonium methylide under phase transfer conditions furnished the highly acid-sensitive epoxide 8, which was ring-opened with sodium benzyl oxide in benzyl alcohol, yielding a 1:3 mixture of benzyl ethers 9 and 10 (89% combined yield). Formation of the undesired isomer 9 could not be prevented by varying the reaction conditions, as anticipated by analogy with recent observations regarding the behaviour of styrene oxide under similar conditions.⁵

Then, oxidation of chromatographically purified 10 with pyridinium chlorochromate supported on alumina lead to ketone 11, whose cyanoborohydride-mediated reductive amination⁶ with a five-fold excess of aminoacetaldehyde diethyl acetal finally provided the secondary amine 12 in 76% yield from 10.

For the last steps, the Bobbitt cyclisation strategy ⁷ was explored first. Thus, 10% palladium–carbon (Pd–C) catalysed debenzylation of 12 in acidic methanol afforded 13 (93%), which was reacted with hydrochloric acid (5 mol dm⁻³) followed by a second Pd–C catalytic hydrogenation. Disappointingly, in spite of the variety of reaction conditions investigated, none of them



Scheme 1 Reagents: i, BuLi, TMEDA, hexane, room temp., 24 h, then DMF (4 25%) (5 52%); ii, NaH, PrSH, DMF, 90 °C, 1 h (77%); iii, PhCH₂Cl, K₂CO₃, EtOH, reflux (94%); iv, Me₃S⁺HSO₄⁻, Bu₄NI (cat.), CH₂Cl₂-50% NaOH aq., reflux, 6 h (100%); v, NaOPhCH₂, PhCH₂OH, 100 °C, overnight (9 23%) (10 66%); vi, PCC/Al₂O₃, NaOAc, CH₂Cl₂, reflux (80%); vii, H₂NCH₂CH(OEt)₂ (5 equiv.), NaCNBH₃, AcOH (4.5 equiv.), MgSO₄, EtOH, reflux (95%); viii, H₂ (4 atm), 10% Pd-C, MeOH (93%); ix, HCl (5 mol dm⁻³), room temp., 18 h, then H₂, 10% Pd-C, 24 h, room temp. (61%)

^{*} All new compounds gave satisfactory spectroscopic data.

furnished the expected product 2; instead, the main compound isolated consisted of amino alcohol 14 (61%), a fragmented derivative of 1. The reactivity obtained here for the cyclisation of 13 was quite different from that previously observed in the synthesis of a related tetrahydroisoquinoline, lacking the 6-Me.⁸ The substitution of both carbon atoms *ortho* to the methoxy group, which is known to induce an out-of-plane conformation of the latter⁹ rendering the aromatic ring less reactive, may account for this unexpected result since the affected substituent, being located *para* to the ring closure position of 13, facilitates the cyclisation.⁷

As depicted in Scheme 2, in order to overcome this problem

Scheme 2 Reagents: i, TsCl, pyridine–CHCl₃, reflux (90%); ii, HCl (6 mol dm⁻³; 8 equiv.), dioxane, reflux, 90 min (90%); iii, H₂ (4 atm), 10% Pd–C, MeOH, 72 h (99%); iv, Na–liq. NH₃, -33 °C, then NH₄Cl (73%)

12 was smoothly converted into sulfonamide 15 (90%) with toluene-*p*-sulfonyl chloride-pyridine and this readily cyclised \dagger to the stable *N*-tosyl-1,2-dihydroisoquinoline 16 (90%) when refluxed in dioxane containing 8 equiv. HCl.¹⁰ Finally, catalytic reduction of 16 over 10% Pd-C (H₂, 4 atm, methanol, 72 h) gave a 99% yield of 17 (m.p. 167–168 °C) and reductive detosylation of 17 with sodium in refluxing liquid ammonia, following the method of du Vigneaud,¹¹ furnished 2‡ (73%) after ammonium chloride quench and column chromatography. This constitutes the first extension of the Jackson modification of the Pomeranz-Fritsch synthesis to the elaboration of a C-1 substituted tetrahydroisoquinoline, avoiding the intermediacy of a fully unsaturated isoquinoline. The application of the above strategy to the total synthesis of MY336-a is currently in progress.

Experimental

8-Benzyloxy-1-benzyloxymethyl-7-methoxy-6-methyl-2tosyl-1,2-dihydroisoquinoline 16.—Aqueous HCl (6 mol dm⁻³; 0.72 cm³, 4.20 mmol) was added to 15 (340 mg, 0.525 mmol) dissolved in dioxane (6 cm³) and the mixture was heated at 100 °C under nitrogen. After 30 min, acetal 15 was transformed almost exclusively into the related aldehyde; $v_{max}(film)/cm^{-1}$ 2924, 2857, 1733, 1455, 1341, 1018 and 699; $\delta_{\rm H}$ (200 MHz; CDCl₃) 2.25 (3 H, s), 2.33 (3 H, s), 3.63 (2 H, d, J 5.2), 3.74 (3 H, s), 3.81 (2 H, d, J 2.0), 4.25 and 4.35 (2 H, ABq, J 12.8), 5.02 and 5.12 (2 H, ABq, J 12.0), 5.09 (1 H, t, J 5.2), 6.80 (2 H, s), 7.04 and 7.53 (4 H, ABq, J 8.0), 7.10-7.55 (10 H, m) and 9.28 (1 H, t, J 2.0); $\delta_{\rm C}(50~{\rm MHz};~{\rm CDCl}_3)$ 15.86, 21.34, 53.81, 55.71, 59.92, 70.17, 72.65, 74.92, 123.35, 125.81, 127.49*, 127.59*, 128.14*, 128.24#, 128.43, 128.82#, 129.09*, 133.08, 136.86, 136.98, 137.29, 143.10, 149.51, 151.50 and 200.85. Heating was continued for a further 1 h, then the reaction system was cooled, saturated NaHCO₃ (5 cm³) was added and the reaction products were extracted with EtOAc $(3 \times 30 \text{ cm}^3)$. Drying (Na_2SO_4) , concentration and chromatography of the combined organic extracts afforded 16 (263 mg, 0.47 mmol, 90%) as an oil; $v_{max}(film)/cm^{-1}$ 2972, 2929, 1640, 1506, 1425, 1161 and 957; δ_H(200 MHz; CDCl₃) 2.18 (3 H, s), 2.28 (3 H, s), 3.34 (1 H, dd, J 5.2, 10.4), 3.53 (1 H, dd, J 2.4, 10.4), 3.72 (3 H, s), 4.33 and 4.56 (2 H, ABq, J 12.0), 4.71 and 5.04 (2 H, ABq, J 11.2), 5.74 (1 H, dd, J 2.4, 5.2), 5.91 (1 H, d, J 7.2), 6.56 (1 H, s), 6.61 (1 H, d, J 7.2), 7.05 and 7.58 (2 H, ABq, J 8.0), 7.22 (5 H, s) and 7.40–7.50 (5 H, m); $\delta_{\rm C}$ (50 MHz; CDCl₃) 15.61, 21.31, 51.43, 59.99, 69.87, 72.36, 74.63, 112.48, 120.25, 122.16, 123.64, 126.32, 126.67*, 127.15, 127.45*, 127.76*, 128.00#, 128.52*, 129.21*, 131.77, 136.85, 137.37, 138.22, 143.22, 147.55 and 150.58. Two carbon atoms displaying the same chemical shifts are designated with * while three carbons with identical resonances are marked with #; m/z(EI) (rel. int.) 555 (M⁺, 0.5%), 434 (100), 343 (20), 279 (4), 188 (44), 160 (18) and 91 (65) (Found: M⁺, 555.207 24. C₃₃H₃₃NO₅S requires M, 555.207 92).

Acknowledgements

The author is grateful to Fundación Antorchas, IFS, TWAS and CONICET for generous financial support. Fruitful discussions with Dr. E. A. Rúveda are also acknowledged.

References

- H. Kase, H. Fujita, J. Nakamura, K. Hashizumi, J. Goto, K. Kubo and K. Shito, J. Antibiot., 1986, 39, 355.
- 2 H. W. Gschwend and H. Rodriguez, Org. React. (N.Y.), 1978, 19, 1.
- 3 T. E. Harmon and D. A. Shirley, J. Org. Chem., 1974, 39, 3164.
- 4 G. I. Feutrill and R. N. Mirrington, Aust. J. Chem., 1972, 25, 1719.
- 5 M. Chini, P. Crotti, E. Giovani, F. Macchia and M. Pineschi, Synlett, 1992, 303.
- 6 T. S. Kaufman, Synth. Commun., 1992, 22, 1913.
- 7 J. M. Bobbitt, J. McNew Kiely, K. L. Khanna and R. Ebermann, J. Org. Chem., 1965, 30, 2247.
- 8 T. S. Kaufman, Synth. Commun., in the press.
- 9 K. S. Dhami and J. B. Stothers, Can. J. Chem., 1966, 44, 2855.
- 10 A. J. Birch, A. H. Jackson and P. V. R. Shannon, J. Chem. Soc., Perkin Trans. 1, 1974, 2185.
- 11 V. du Vigneaud and O. K. Behrens, J. Biol. Chem., 1937, 117, 27.

Paper 2/05983E Received 9th November 1992 Accepted 1st December 1992

[†] Prior to cyclisation, acetal 15 completely hydrolysed *in situ* to the related aldehyde, indicating the less reactive nature of its 1,2,3,4-tetrasubstituted aromatic moiety.¹⁰

 $[\]ddagger v_{max}(neat)/cm^{-1} 3370, 3130, 2930, 2830, 1620 and 1190; <math>\delta_{H}(200 \text{ MHz}; D_2 O) 2.27 (3 H, s), 2.79-3.06 (2 H, m), 3.19-3.45 (2 H, m), 3.76 (1 H, dd, J 9, 11.9), 3.79 (3 H, s), 4.05 (1 H, dd, J 4.2, 11.9), 4.55 (1 H, dd, J 4.2, 9) and 6.69 (1 H, s); <math>\delta_C(50 \text{ MHz}; D_2 O)$ 16.17, 26.95, 38.05, 54.18, 61.25, 61.47, 119.41, 119.66, 131.20, 132.26, 146.25 and 152.63 (Found: M⁺ - CH_3, 208.097 17. C₁₁H₁₄NO₃ requires $M - CH_3$, 208.097 36).